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Abstract

Enabling humanoid robots to clean rooms has long been a pursued dream within
humanoid research communities. However, many real-world tasks, such as mov-
ing large and heavy furniture, require multi-humanoid collaboration. Given the
scarcity of motion capture data on multi-humanoid collaboration and the efficiency
challenges associated with multi-agent learning and control, these tasks cannot be
straightforwardly addressed using training paradigms designed for single-agent
scenarios. In this paper, we introduce Cooperative Human-Object Interaction
(CooHOI), a framework designed to tackle the challenge of multi-humanoid object
transportation problem through a two-phase learning paradigm: individual skill
learning and subsequent policy transfer. First, a single humanoid character learns to
interact with objects through imitation learning from human motion priors. Then,
the humanoid learns to collaborate with others by considering the shared dynamics
of the manipulated object using centralized training and decentralized execution
(CTDE) multi-agent RL algorithms. When one agent interacts with the object,
resulting in specific object dynamics changes, the other agents learn to respond
appropriately, thereby achieving implicit communication and coordination between
teammates. Unlike previous approaches that relied on tracking-based methods for
multi-humanoid HOI, CooHOI is inherently efficient, does not depend on motion
capture data of multi-humanoid interactions, and can be seamlessly extended to
include more participants and a wide range of object types.

1 Introduction

Imagine the scenario where you’re moving home and seeking help from humanoid robots. How-
ever, certain items, like beds and sofas, are too large and heavy for a single robot to manage
effectively. Despite significant advancements in learning and control of physics-based human-
object interactions [6, 43, 21, 37, 20, 45, 7] and humanoid robots performing complex opera-
tions [29, 19, 26, 2, 42, 41, 10, 9, 39], the area of multiple humanoids collaboratively transporting
objects—particularly when a single individual may find it challenging to handle heavy or long
items—remains relatively under-investigated. Some previous efforts [44] tried to address these
challenges using tracking-based methods, capturing interactions between two characters during tasks
like box carrying, and training policies to mimic these actions. However, obtaining comprehensive
motion data on interactions involving multiple participants is costly, and tracking-based methods
struggle to adapt to scenarios with varying object sizes and an increased number of agents. Another
straightforward idea might be to directly train a multi-agent policy from scratch, using an approach
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Figure 1: Our framework empowers physically simulated characters to execute multi-agent human-
object interaction (HOI) tasks with naturalness and precision.

similar to that for single agents. However, the expanded action sampling space significantly slows
down the overall training process, preventing the policy from converging properly.

Inspired by how humans learn cooperation skills, i.e. beginning with mastering tasks independently
and then developing strategies for collaborative efforts in coordination tasks, we propose a two-
stage framework for training multi-agent cooperation strategies, named Cooperative Human-Object
Interaction, CooHOI. In the initial stage, we train a single-agent object carrying policy utilizing the
AMP framework [25, 7]. To ensure agents focus significantly on the dynamics of the objects they are
tasked with transporting, we include the state and velocity information of the object’s bounding box
in the agent’s observation space. The second stage aims to transfer these individual carrying skills
into collaborative strategies. When two humans collaborate to carry a long object, they typically hold
it at opposite ends. Moreover, when one individual takes action, it affects the dynamics of the object,
enabling the other individual to perceive this change and adjust their actions accordingly for effective
cooperation. Therefore, we adjust the observation for both agents to focus on the bounding boxes
located at the ends of the long objects. This refinement aligns with the observation space used during
the single-agent training phase, effectively leveraging the previously developed single carrying skills.
Additionally, the inherent rigid body characteristic of long objects facilitates implicit communication
between agents. This setup allows an agent to adeptly adjust to their teammate’s actions by observing
changes in the object’s dynamics, thereby enhancing coordination and cooperation in carrying tasks.
The overall framework is illustrated in Figure 2.

To validate the effectiveness of our framework, we conducted experiments where we trained control
policies for two humanoid characters to carry various long objects, such as boxes and sofas. Our
results demonstrate that our framework enables these characters to exhibit natural-looking behaviors
while successfully completing cooperative tasks, utilizing only motion capture data from one single
agent. We compared our approach against the baseline method of training from scratch and performed
detailed ablation studies to evaluate the impact of our design decisions, also testing the limitations
of our framework. In summary, our main contributions are as follows: 1)We have developed an
efficient and robust framework, CooHOI, for training physically simulated characters in cooperative
object transporting tasks, demonstrating significant effectiveness. 2)We have established that utilizing
object dynamics for communication proves to be an effective strategy in learning cooperative object
transporting tasks. 3)We have tested the capability boundaries of the policy models using the AMP

2



framework for single-agent training and multi-agent collaboration tasks, providing insights for the
community.

2 Related Work

Physics-based Human-Object Interaction Motion Synthesis. Synthesizing natural and physically
plausible human-scene interactions, such as humanoid characters sitting on chairs, lying on beds,
and carrying boxes, is crucial for advancements in character animation and robotics. Physics-based
methods leverage physics simulators [18, 35] to control characters modeled as interconnected rigid
bodies through joint torques and deep reinforcement learning methods. To facilitate the training
process, some strategies employ tracking-based techniques [16, 23, 1, 38, 20, 44], which rely on the
availability of high-quality reference motions. This reliance often limits their application in human-
scene interactions due to the scarcity of suitable data and affects their versatility across different
scenarios. Recently, the Adversarial Motion Priors(AMP) framework [25] introduced the use of
a discriminator to ensure that generated motions align with the distribution of reference motions.
This approach has shown success in various downstream tasks [11, 24, 34], including human-scene
interactions [7, 21, 37]. Despite these advancements, there has been limited focus on synthesizing
cooperative behaviors among multiple characters interacting with objects—a gap that our work aims
to address.

Multi-Character Control. While significant advancements have been made in synthesizing mo-
tions for single agents, the realm of multi-character animation remains relatively unexplored. Existing
approaches predominantly rely on kinematic-based methods [36, 14, 32, 30, 5] and datasets of multi-
character interactions [13, 31, 4]. These methods, however, require high-quality interaction data and
often fall short in ensuring physical plausibility or adequately handling multi-character cooperative
interactions with objects. Physics-based techniques for character animation have primarily focused on
aspects like crowd navigation [8, 27], limiting themselves to behaviors such as pedestrian movement
and collision avoidance. Although [44] showcases interactions among multiple characters and
object manipulation, such as carrying long boxes, these tracking-based approaches necessitate motion
capture data of human interactions or human-object interactions and struggle to scale to an arbitrary
number of agents or different types of objects. In contrast, our framework requires only single agent
motion capture data for multi-character object transporting tasks and can easily extend to different
types of objects and different numbers of agents.
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Figure 2: Our framework employs a two-phase learning paradigm. In the first phase, depicted on
the left, we train single-agent carrying skills by imitating from human motion priors. In the second
phase, we transfer these single-agent skills to a cooperative context. Notably, we use the dynamics of
the object as feedback information, as illustrated by the bounding box shown in the figures.
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3 Methodology

Figure 2 shows the overall framework of our approach. Our method utilizes motion data from
individual agents and involves a two-stage learning process to create cooperative control policies.
First, we train a policy for single-agent carrying tasks, using the dynamics of the manipulated object
as feedback, as described in Section 3.2. Then, we use parallel training to develop cooperative
strategies, with changes in the object’s dynamics acting as a form of implicit communication. This is
further explained in Section 3.3.

3.1 Preliminary

Physics-based Character Control. We formulate physics-based character control as a goal-
conditioned reinforcement learning task. At each time step t, the agent samples an action from
its policy π (at | st,gt) based on the current state st and the task-specific goal feature gt. When
this action is applied to the character, the environment transitions to the next state st+1, and the
agent receives a task reward rG (st,gt, st+1). To train control policies that enable characters to
achieve high-level tasks in a natural and life-like manner, we adopt the AMP framework [25].
While this framework aims to optimize the expected cumulative task reward J(π), it introduces
a discriminator to encourage the character to produce behaviors similar to those in the dataset by
providing a style reward rS (st, st+1). The agent’s reward rt at each time step t is defined by
rt = wGrG (st,gt, st+1) + wSrS (st, st+1). More details can be found in our appendix and the
original AMP paper [25].

Multi-Agent Reinforcement Learning. We formulate our cooperative task as a Partially Ob-
servable Markov Decision Process (POMDP) [15]. A POMDP with n agents is defined by
{S,A1, · · · ,An,O1, · · · ,On,R,P, T }, where S is the state space, Ai is the action space for
agent i, Oi is the local observation for agent i, and R is the shared reward function. Each agent
uses its own policy πθ (ai | oi) to take action ai ∈ Ai based on its local observation oi ∈ Oi. The
environment transitions according to the function P (st+1 | st,a1, · · · ,an), where st, st+1 are states
of time step t and t + 1, respectively. The agents then get a reward rt based on the states st and
st+1. The goal of multi-agent reinforcement learning algorithms is to jointly optimize the discounted
accumulated reward J(θ) = Eat

1,··· ,at
n,s

t

[
ΣT

t=0γ
trt

]
.

3.2 Single Agent Carrying Skills Training

In developing our approach for single-agent object manipulation, we introduce several advancements
based on previous methods. We integrate the dynamics of the manipulated object into the observation
space and introduce a reward function framework for object manipulation tasks. These enhancements
allow the trained policy to easily adapt to multi-agent settings.

3.2.1 Enriched Goal Feature with Manipulated Object Dynamics as Feedback.

For successful object carrying tasks, we emphasize the critical role of using the dynamics of the
manipulated object as feedback. These dynamics are captured through the eight vertices of the object
o’s bounding box bver

t , its rotation angle bfacing
t , its velocity bvt and its angular velocity bwt , as described

in Equation (1).
Dt = concatenate(bver

t , bfacing
t , bvt , b

w
t ). (1)

By incorporating these dynamics information into the observation, we establish a feedback mechanism
that keeps agents continually informed about the outcomes of their actions. This also equips agents
with the capability to react appropriately, whether engaged in single-agent tasks or collaborative
multi-agent environments. Along with the state of the agent st and the position of the target dpost , we
formulate the dynamics-aware task observation as:

ot = concatenate(st, d
pos
t ,Dt). (2)

3.2.2 Enriched Task Design facilitating Efficient Skill Transfer.

To facilitate the transition from single-agent to multi-agent object carrying tasks, we decompose the
carrying process into three sub-tasks: walking towards the objects, lifting the object from the ground,

4



and carrying the object to its intended destination. Consequently, the reward system is structured into
three components: rwalk , rheld and rtarget .

To encourage the agents to choose the face of the object they will face while carrying, we introduce
an additional goal feature called stand points xstand

t . During training, these stand points are randomly
allocated to positions directly in front of the various faces of the object at time step t. This strategy is
designed to facilitate multi-agent cooperative training, helping the agents learn to avoid walking to
the long side of the object where it is difficult to grasp and carry. We then define rwalk as the distance
between the agent and the stand point, as specified in Equation (3).

rwalk = exp
(
∥xroot

t − xstanding
t ∥2

)
(3)

Additionally, in scenarios where multiple agents are transporting an object, the object’s considerable
size often makes it difficult for agents to find an appropriate grip point for lifting. To address this, we
introduce a novel concept called held points. Specifically, we select the geometric center ht of each
end of the object as the held point and encourage the agents to interact at these points. The reward
function rheld, as defined in Equation (4), uses xhand

t to represent the mean position of the agent’s two
hands. This design aids the transition from individual to collective task environments by encouraging
agents to identify the held points at the geometric center of each end of the long object.

rheld = exp
(
∥xhand

t − ht∥2
)

(4)

We then define rtarget to encourage agents to carry the object to the destination:

rtarget = exp
(
∥xtarget

t − xobject
t ∥2

)
. (5)

3.3 Cooperation Strategy Training

Upon mastering single-agent tasks involving object carrying, it is crucial to effectively transfer and
further enhance these abilities to boost the cooperative learning process. Initially, we facilitate the
skill transfer by guiding each agent to lift and transport one end of a large object. Subsequently, we
refine the control policy through the application of the Multi-Agent Proximal Policy Optimization
(MAPPO) algorithm [40], leveraging the dynamics of manipulated objects for feedback and implicit
communication.

3.3.1 Efficient Skill Transfer Using Dynamics Information.

Initially, we replicate the single-agent object-carrying policy for all agents and then fine-tune it
within a cooperative framework. However, handling a long object poses a challenge due to its size,
which complicates the agents’ ability to identify suitable lifting points, thereby hindering the efficient
application of their object-carrying skills. To address this issue, we encourage agents to observe the
dynamics information—specifically, the state and velocity data of the bounding box at each end of the
long object, as outlined in Section 3.2.1. This approach allows agents to simulate carrying a smaller
box positioned at the long object’s ends, using the dynamics of this “smaller box" as feedback, similar
to the single-agent skill training process. Additionally, we incorporate previous methodologies, such
as stand points and held points described in Section 3.2.2, to enhance the smooth transition of skills.

Moreover, this design of dynamics as observation acts as implicit communication channel between
agents. When an agent takes an action, the object dynamics will change, and because we use the
manipulated object dynamics as feedback in single-agent training, the change in object dynamics
will result in a corresponding change in strategy for the other agents. This method of implicit
communication presents a straightforward yet effective approach for enhancing teamwork in multi-
agent settings. Furthermore, this framework proves to be adaptable with variations in the number of
participating agents.

3.3.2 Cooperation Training using CTDE Scheme.

The non-stationary environment of multi-agent reinforcement learning, coupled with sample efficiency
issues, presents a significant challenge in training agents to collaborate effectively. During the
cooperation training phase, we continue to use a reward function similar to that used in the single-
agent training phase and employ the centralized training and decentralized execution (CTDE) [15]
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Table 1: This table presents our results for single-agent and two-agent carrying of the Box object.
“CooHOI” refers to the policy trained using the complete CooHOI framework in both single-agent and
two-agent settings. “CooHOI+WeightAug” indicates that we applied the same weight augmentation
design as InterPhys [7].

Agent Number Methods Weight (kg) Distance(m) Success Rate(%) Precision (cm)

Single Agent InterPhys [7] [5,26] [1,10] 94.3 8.3
CooHOI+WeightAug(Ours) [2,26] [1,20] 93.98 4.8

CooHOI(Ours) [2,13] [1,20] 96.48 6.9

Two Agent From Scratch [15,40] [2,20] 0 NAN
CooHOI(Ours) [15,40] [2,20] 89.54 3.86

scheme for coordination training. During the training phase, we utilize the Multi-Agent Proximal
Policy Optimization (MAPPO) algorithm [40] to develop cooperative strategies among agents. This
approach involves updating the value function network Vϕ according to Equation (6), using the
trajectories D that are accumulated and shared among all agents. More details can be found in our
appendix and the original MAPPO paper [40].

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vϕ

(
ot, st,at

−)− R̂t

)2

(6)

In addition, given the homogeneous roles of agents in the collaborative task of carrying long objects,
we adopt the strategy of parameter sharing, a method proven to enhance performance across various
cooperative tasks [3, 33, 40]. Specifically, we share the parameters of both the policy and value
networks among all agents to improve the training of cooperative behaviors.

4 Experiments

We conducted extensive experiments to test the effectiveness and also the boundary of capabilities
of our framework. The basic experiment setups are explained in Section 4.1 and in Appendix. We
evaluate our framework on various object-carrying tasks in Section 4.2. To better understand the
importance of different design decisions in our framework, we performed extensive ablation studies
in Section 4.3. Since our method primarily focuses on interactions between characters and objects,
we also provide extensive visual analysis and presentations to demonstrate our framework.

4.1 Experiments Setup

Datasets and Initialization. Our primary source of motion data is the AMASS dataset [17], which
provides motions encoded in SMPL [22] parameters. We collected a total of four types of basic
reference motion data, including 9 motions related to walking, 5 related to picking up, 4 related
to carrying, and 5 related to putting down. To enhance the robustness of the carrying process, we
randomly initialized the weight and size of the object, as well as the distance from the person to the
destination. Specifically, for a single individual, the object’s weight ranged from 5KG to 25KG, its
size varied between 0.5 to 1.5 times its original scale, and the distances between the agent and the
object, as well as between the object and the destination, ranged from 1 m to 20 m. To enhance the
robustness of the carrying process, we randomly varied the weight, size, and of the object, as well as
the distance from the person to the endpoint. Furthermore, considering that the process of multiple
people carrying might involve situations where someone walks backward, we ensured that the single
agent mastered the basic movements for multi-person collaboration by introducing additional motion
data involving backward and side walking. More training details can be found in the appendix.

Metrics. Following InterPhys [7], we utilize Success Rate and Precision as the primary metrics.
Specifically, a task is considered successful if the distance between the object and its destination is
less than 0.2m. Precision measures the distance between the object and the target point across all
completed tasks. Moreover, all evaluations are based on average results across 4096 environments
and 4 random seeds.
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Figure 3: Carrying performance for objects of different categories. From left to right: Table, Armchair,
and High Stools. All objects were required to be moved to a location 4 meters away.

Table 2: The trained policy exhibits the ability to handle various object categories encountered in
daily life with simple fine-tuning. We tested the performance of our policy model across different
objects.

Agent Number Object Category Distance(m) Success Rate(%) Precision (cm)

Single Agent
Table [1,20] 97.07 5.23

Armchair [1,20] 97.26 5.05
HighStool [1,20] 99.21 4.02

Two Agents Sofa [2,20] 84.17 10.12

4.2 Evaluation on Object Carrying Tasks

Comprehensive Evaluation on Box Carrying. We evaluate our policy in both single-agent and
two-agent scenarios. Table 1 presents the performance statistics for the carrying task. Consistent
with the settings described in Interphys [7], we randomize the weight and distance as outlined in
Section4.1. It is important to note that InterPhys [7] includes the weight information of objects as part
of the observation, enabling it to achieve a broader weight range. To ensure result comparability, as
shown in Line 2, we also incorporated this information into individual training. The results indicate
that, with a similar success rate, we increased the transportation distance and improved transportation
accuracy, even when using discrete motion data rather than the costly whole-body motion capture
data used in InterPhys [7]. As shown in Line 3, although removing the weight information reduces
the weight range the agent can handle, it represents a more realistic setting and provides comparable
baseline results for future research. Lines 4-5 show the results in multi-agent scenarios. Without using
our CooHOI framework and simply employing parallel training for multi-agent tasks, the training
fails. More analysis and visualizations will be provided in the following sections.

Extend to Diverse Daily Life Objects. Moreover, we are not satisfied with merely transporting
simple boxes. Therefore, we have sampled nearly 40 common everyday objects from [6], including
three types of single-person objects—Table, Armchair, and HighStool—as well as one type of two-
person object, the Sofa, as illustrated in Figure 3 and Line 1 in Figure 4. Additional visualizations
of these objects can be found in appendix. Additionally, we present the results of quantitative
experiments in Table 2, which indicate that our policy can effectively handle most daily life objects
with a high success rate. Due to the greater variability in the shape and weight of sofas, the accuracy
in Line 4 shows a slight drop compared to the result in Line 4 of Table 1. It is important to note that
the significant variations in object shapes make it challenging to learn a unified object representation
with a limited amount of data, especially since our input is merely a simple bounding box. Therefore,
for single-person transport, different types of objects need to be trained separately from scratch,
similar to how we handle boxes. For multi-person transport, objects like sofas, similar to boxes,
require fine-tuning based on the weights obtained from single-person box transport.

4.3 Ablation Studies

To evaluate and understand the importance of different design choices in CooHOI, we conduct a
detailed analysis of scenarios involving single and multiple agents. This includes boundary analysis,
which explores factors that lead to a decrease in the success rate during object carrying. Furthermore,
to fully validate the scalability of our method, we also tested and included the results in a four-person
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Get close to the sofa Pick up the sofa Put Down sofa to destination

Get close to the box Pick up the box “Carry” box to destination

Figure 4: Visualization of cooperative carrying in the multi-agent scenario.

Success Rate and Steps of One-Agent-Policy and Two-Agent-Policy

Figure 5: Detailed ablation experiments on single and two agents cases. "Step" measures the average
consumed time in the successful cases. In the 2nd figure, the green circle represents the single-agent
scenario without scaling the object’s width, while the purple circle represents the multi-agent scenario.

scenario. To ensure the reliability of our results, our experiments continue to utilize the average of 4
random seeds as previously mentioned.

Single-Agent-Based Box Carrying. We have demonstrated our framework’s effectiveness in
Table 1. Moreover, we aim to further investigate the maximum potential of our approach. We
examined the robustness of the single-agent policy from various perspectives, including object shape,
scale, weight, and trajectory length, as shown in Figure 5. First, we observed that a single agent can
handle approximately 13 kg of weight. Continuously increasing the weight makes it difficult for the
agent to lift the object. As mentioned in 4.2, since our policy input does not include object density, it
is challenging for the agents to generalize across different weights. When the weight reaches 20 kg,
the accuracy drops to just 30%. Additionally, due to the limited reach of human arms and the lack of
dexterous hands in our agent, it is challenging for the agent to lift boxes that are either too large or
too small. To validate this hypothesis, we restricted the object’s width to 1x while scaling the length
and height to 1.5x. As shown by the green circle in the second figure of Figure 5, the success rate
could reach 97.8%. Furthermore, our strategy is quite robust to distance variations and is generally
unaffected by them.

Multi-Agent-Based Box Carrying. We conducted upper-limit testing on the multi-agent policy
using a similar evaluation method as the single-agent case. As shown in Figure 5, the conclusions for
two agents are similar to those for a single agent. The curves in the first figure demonstrate that with
an increase in the number of agents, we can easily lift larger and heavier objects that a single person
cannot handle, highlighting the necessity of having multiple agents. However, due to the increased

8



complexity of coordinating two agents, boundary conditions have a more pronounced impact on
the policy. For instance, objects that are excessively large or small can cause the policy to fail. As
shown by the purple circle in the second figure of Figure 5, we conducted a similar experiment to
the single-agent scenario. By restricting the object’s width to 1x and scaling the length and height to
1.5x, the success rate increased from 0 to 88.67%.

Analysis of CooHOI Framework. To thoroughly investigate the contribution of CooHOI, we
analyzed the results of each method mentioned in Section 3 separately, as shown by the training curves
in Figure 8. The first factor is the influence of the Stand Point, which refers to whether an extra point
is introduced in front of the object to encourage the agent to walk toward it. During the experiments,
we discovered that without this, the agent sometimes fails to approach the shortest edge of the object,
resulting in a lower hold reward. This leads to an incomplete lift and the subsequent inability to
carry the object. Dynamic Observation is the second factor, indicating whether we use dynamic
information as observation for each agent. Without it, the observation for each agent is limited to
the state information of the long object. We found that without the dynamics information, the agent
just stands in front of the object, seemingly unsure of what to do. Reverse Walk indicates whether
the training process includes motion data for walking backward and a reward function focused on
learning this movement. We found that if the policy for a single agent is restricted to only forward
movement, training with two agents then leads to a deadlock state. As shown in Figure 8, the agents
might be able to contact the box, but they cannot carry it to the destination. Initialization refers to
whether the two-agent policy is initialized using the single-agent policy and then be fine-tuned. In
our experiment, even with extended training duration, training the two-agent policy from scratch still
failed to achieve successful carrying, as shown in Figure 8. Based on the results above, the absence
of any of the aforementioned methods causes our policy to fall into a locally suboptimal solution,
preventing the completion of the transportation task. Moreover, you can also find more interesting
visual examples of the above failure cases while extending agent numbers from one to two in the
appendix.

5 Conclusion and Limitation

In this paper, we present Cooperative Human-Object Interaction (CooHOI), a framework designed to
address cooperative object transporting tasks through a two-phase learning approach. By initially
focusing on individual skill mastery via the Adversarial Motion Priors (AMP) method, followed
by a strategic transition to multi-agent collaboration using Multi-Agent Proximal Policy Optimiza-
tion (MAPPO), our approach facilitates a sophisticated interplay of shared dynamics and implicit
communication among agents, resulting in an efficient and generalized performance.

However, it is important to note that within the scope of this paper, our huamnoid characters lack
dexterous hands, which limit their ability to manipulate slippery objects or perform more precise
actions. In future research, we aim to incorporate dexterous hands to enable the manipulation of a
wider variety of objects, as well as integrate active perception and navigational abilities to make our
framework more generalizable.
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Appendix

In this section, we categorize our discussion into three main parts. Initially, we delve into the sources
and processing methods for motion data used in training. Following that, we explore how observations
are constructed and how reward functions are established. Finally, we describe the implementation
details including physics simulation and hyperparameters in network training.

A Sources and Processing of Motion Data

We collected a total of four types of basic reference motion data, including 9 motions related to
walking, 5 related to picking up, 4 related to carrying, and 5 related to putting down. All these data
are in SMPL format and recorded at 30 fps over 139 frames. They all originate from the ACCAD
subset of the AMASS [17] dataset. Additionally, to ensure the stability of cooperative tasks involving
multiple individuals, we included data for sidewalk and reverse carry motions. The sidewalk data
comes from the CMU subset within AMASS, while reverse carry data was scarce. Therefore, we
created reverse carry data by reversing the process of the carry data. In total, we used 26 motion
data as references. Additionally, we performed a simple visualization of the extended objects as in
Figure 6, which sampled from dataset [6].

ArmChair HighStool Table Sofa

Figure 6: Some visualization of daily-life objects.

B Task Formulation

We formulate our approach as goal-conditioned reinforcement learning. At each discrete step t, the
policy π (at | st,gt) generates an action at, based on the current state st and a goal-specific feature
gt. Following this action, the environment transitions into a subsequent state, and the agent receives
a reward rt. An episode concludes either after reaching a predetermined length or if conditions for
early termination (ET) are met. Further details are provided below.

B.1 Task Observation

The observational for the task is divided into two primary elements: the state feature s, which
encapsulates the character’s bodily configuration, and the goal feature g, which pertains to tasks
involving object manipulation.

The state feature s is constituted by a 225-dimensional vector, encompassing:

• Height of the root: 1 dimension.
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• Rotation of the root: 6 dimensions.
• Linear and angular velocity of the root: 6 dimensions.
• Position of local joints: 42 dimensions.
• Rotations of local joints: 84 dimensions.
• Linear and angular velocity of local joints: 84 dimensions.

While the root height is measured in the global reference frame, all other components are defined in
the frame local to the character. Rotations follow a 6-dimensional representation for continuity [46].
The simulated character aligns with [25, 24, 7, 21], featuring 12 internally movable joints and a total
of 28 degrees of freedom.

The goal feature g comprises a 75-dimensional vector, including:

• Position of the object: 3 dimensions.
• Rotation of the object: 6 dimensions.
• Dynamics of the object, which cover the bounding box position, along with linear and

angular velocities: 33 dimensions.
• Target location: 3 dimensions.
• Target orientation: 6 dimensions.
• Dimensions of the target’s bounding box: 24 dimensions.

These are measured in the frame local to the character.

B.2 Reward Functions

The agent’s reward rt at each time step t is defined by

rt = wGrG (st,gt, st+1) + wSrS (st, st+1) (7)

Follow the formulation of the AMP framework [25], the style reward rS is calculated according to
the discriminator:

rS (st, st+1) = − log (1−D (st, st+1)) (8)
And the discriminator is trained by the following objective:

argmin
D

− EdM(s,st+1) [log (D (s, st+1))]

− Edπ(s,st+1) [log (1−D (s, st+1))]

+ wgpEdM(s,st+1)

[∥∥∥∇ϕD(ϕ)|ϕ=(s,st+1)

∥∥∥2]
(9)

The task reward function rG is generally segmented into three components, as in Equation (10): 1)
rGwalk, which encourages the agent to approach the object intended for manipulation. 2) rGheld, which
encourages the agent to align the center of its hands with the center of the box. 3) rGtarget, which
encourages the agent to transport the object to the specified destination.

rG = 0.2 ∗ rGwalk + 0.4 ∗ rGheld + 0.4 ∗ rGtarget (10)

The walk reward rGwalk is formulated as Equation (11), where xstanding
t denotes the position of the

standing point near the object,v∗ denotes the target velocity, and d∗ denotes the desired direction
from root to the object.

rGwalk =


0.4 exp

(
−0.5

∥∥∥xstanding
t − xroot

t

∥∥∥2)+

0.4 exp
(
−2.0 ∥v∗ − droot

t · ẋroot
t ∥2

)
+

0.2 ∥d∗ · droot
t ∥2 , ∥x∗

t − xroot
t ∥ > 0.2m

1.0, otherwise

(11)
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The held reward rGheld is formulated in Equation (12), where xhand
t denotes the center of the agent’s

two hands and ht is the position of the object helding point.

rGheld = exp
(
−5.0∥xhand

t − ht∥2
)

(12)

The target reward rGtarget consist of two parts, rcarry and rface, as described in Equation (13).

rGtarget = 0.5 ∗ rcarry + 0.5 ∗ rface. (13)

The face reward rface guides the agent to walk either forwards or backward. As shown in Equation (14),
this is achieved by comparing the agent’s velocity direction with its orientation relative to the
endpoint’s location, thereby cultivating the agent’s proficiency in bidirectional locomotion.

rface =

{
xface
t · vface

t , xface
t · (dt − xroot

t ) ≥ 0

−xface
t · vface

t , xface
t · (xroot

t − dt) ≥ 0
(14)

The carry reward rcarry, is designed to guarantee that the object is delivered to the precise location
at a specific angle. As outlined in Eq. 15, we constrain the agent’s movement direction, alongside
the proximity to the end destination and the intended angle. Within this context, x∗

t signifies the
3D coordinates of the destination, while p∗t represents the 2D destination coordinates. Similarly,
proot
t indicates the 3D position of the agent’s root. Furthermore, rot∗ designates the object’s desired

orientation.

rcarry =

{
0.5 ∗ rnear

t + 0.25 ∗ rfart + 0.25 ∗ rdir
t ,

∥∥x∗
t − xroot

t

∥∥ > 0.1m

0.5 ∗ rnear
t + 0.25 ∗ rdir

t + 0.25, otherwise,
(15)

where

rfar
t = exp

(
−0.5

∥∥p∗t − proot
t

∥∥2)
rnear
t = exp

(
−10.0

∥∥x∗
t − xroot

t

∥∥2)
rdir
t =

∥∥∥rot∗ · rotobject
t

∥∥∥2
B.3 Reset and early termination condition

An episode ends either after reaching a predetermined duration or upon the activation of early
termination (ET) conditions. During our experiments, we observed that lower object heights could
lead to kicking actions, where the agent tend to kick the object to destination, significantly slowing
down the training process. To address this, we assess the object’s velocity and height to determine the
presence of kicking phenomena. If the height of the object is lower than 0.3m and its velocity in x-y
plane is greater than 1m/s, the kicking early termination (KET) condition is triggered. Experimental
results show that this strategy significantly stabilize the training process.

C Implementation Details

C.1 Training Details.

Adopting the methodology of AMP [25], we develop a low-level controller encompassing both policy
and discriminator networks. The policy network is bifurcated into a critic and an actor-network,
each initiating with a CNN layer and proceeding to two MLP layers configured with [1024, 1024,
512] units. The discriminator network is similarly structured, featuring two MLP layers with [1024,
1024, 512] units. We select PPO [28] as the primary reinforcement learning algorithm, coupled with
the Adam optimizer [12] at a learning rate of 2e-5. The only difference between the multi-agent
setting and the single-agent setting during training is whether a pre-trained weight is loaded. Our
experiments are conducted on the IsaacGym simulator [18] using a single Nvidia GTX 3090Ti GPU.
We run 4096 parallel environments across 15,000 epochs, which takes approximately 15 hours to
complete.
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C.2 Hyperparameters

Following previous work[25, 7, 21], we use the Isaac Gym simulator [18]. The simulation runs at
60Hz and the control policy runs at 30Hz.

Besides, the hyperparameters we used in the training process is detailed below:

Table 3: Hyperparameters for CooHOI.

Parameter Value

Number of Environments 4096
wG Task-Reward Weight 0.5
wS Style-Reward Weight 0.5

PPO Minibatch Size 16384
AMP Minibatch Size 4096

Horizon Length 32
Learning Rate 2e− 5

PPO Clip Threshold ϵ 0.2
γ Discount 0.99
GAE (λ) 0.95

T Episode Length 600

D More Ablation Studies and Visulizations.

Failure case visualization. Here, we conducted a visual analysis of the fail cases. First, for the
case lacking a stand point, we can clearly see that the agent moves towards the nearest face, even
though it is not the shortest edge, which leads to the agent’s inability to carry the object. In the second
image, in the absence of dynamic input, we observe that the agent stands still, unable even to squat.
In the third image, which depicts the scenario without reverse walking, the agent is able to lift the
box, but because it cannot learn the backward gait, the two agents end up pushing the box against
each other, causing a deadlock.

No stand point No Dynamic Observation No Reverse Walk

wrong face stand still deadlock
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Figure 7: Some visualization on failure cases. "Stand point" means a leading point behind the object
to encourage the agent to walk to the object. "Dynamic Observation" means that each agent has its
unique input. "Reverse Walk" indicates whether a single agent possesses the skill to walk backward.
Without any of the methods we propose, the policy cannot be successfully trained.

Ablation on performance of CooHOI under noisy scenarios. In CooHOI, all state information
is provided using ground truth data from simulators. However, in real-world settings, input data is
often noisy and prone to errors. To evaluate the robustness of our framework in such conditions, we
introduce random noise into the observation space of our policy and assess its performance under
observation noise, as shown in Table 4.
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Table 4: Results of our policy under noisy conditions: We tested both single-agent and two-agent
box-carrying scenarios. The noise level is defined by the standard deviation of the Gaussian noise
used. SR stands for success rate. The definitions of success rate and precision are consistent with
those in Section 4.1 of our paper.

Agent # Weight(kg) Noise SR (%) Precision (cm)

1 10 0 96.85 5.76
1 10 1 95.80 6.82
1 10 2 78.56 9.28
1 10 3 60.03 10.75
1 10 4 48.48 8.62

2 20 0 90.33 8.80
2 20 1 90.23 8.96
2 20 2 87.98 8.92
2 20 3 84.86 9.01
2 20 4 79.93 9.28

Training reward curves. To enhance visualization for ablation studies, we plot the training curves
for both the carry reward and held reward in the two-agent training setup. The results, shown in Fig 8,
illustrate the effectiveness of our CooHOI framework.

Figure 8: Training curves for carry reward and held reward in the two-agent setting, using four
random seeds, consistent with the definitions provided in Section 3. To ensure different models were
trained for the same duration, we extended the training steps for the ‘From Scratch’ model by a factor
of 4, as indicated by ‘Scale 4’ in the graph. The curves were plotted by sampling every four frames.
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